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Outline

 Principles of semiconductor detectors

[ Driving issues for designing of front end electronics:
 charge collection efficiency and cross talk signals
1 noise and power
1 PSRR

(1 Consequences of technology scaling

 Basic configuration of feedbacks and architectures of
the input stages

(J Some examples of front end stages
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Principles of semiconductor detectors
for tracking applications
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ASIC wire bonded to detector
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O p* n junction reverse biased forms the detection zone
[ lonization along the track of the high-energy particle or photoelectric absorption of y quant
1 For 300um Si detector the most probable signal is around 3.5 fC (MIP)

[ Electric field proportional to bias provides drifting of the created charge pairs — induced
current is read out by the front-end electronics

[ Spatial resolution provided by the segmentation of the detector
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From single crystal to system

Double sided silicon strip detector module of ATLAS experiment at CERN/Geneva, (left). The
module consists of four, 6.5 by 6.5 cm silicon detectors (two daisy-chained back to back) and it
is equipped with 12 (6 on each side) 128 channel front end ASICs.

One barrel layer of the ATLAS SemiConductor Tracker, 4088 modules, 61m? (right).

Multichannel systems in confined space = power consumption one of the critical issue.
Another requirements: noise performance, response time, stability, PSRR, rad-hardness
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Signal reception and cross-talk



Reception of signals from silicon detector
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saturation level

= Rp -> infinity
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U Detector represented by parasitic capacitance, signal represented by current pulse (Dirac-Delta)
O Charge sensitive preamplifier

U Dirac-Delta current pulses integrated on feedback capacitance (smaller capacitance = higher
signal gain)
[ Discharge provided by the feedback resistor (prevents saturation)

O Mode of the preamplifier is defined by feedback time constant t.=R; C; (transimpedance or charge
amplifier)
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Input impedance and cross-talk signals
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Cross talk in time domain

A naive approach to the crosstalk problem:
We loose 1% charge in the readout channel (e.g. due to the input
impedance) so we can expect that the signal seen in one neighbor will
be 0.5% = wrong!

Unfortunately, the amplitude of the cross talk w.r.t. signals readout from
detector, because of different frequency spectra, can be much higher than

the percentage of the lost charge

Analytical approach possible by use of Laplace transform.
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Example of crosstalk calculation for transimpedance mode

0% | /\ Kv=83dB, t,, =200ns, GBP=1GHz "

0D : / \ ] Detector; c,.=7pF, c,=4pF (ATLAS SCT)
o |\ *
w |\

/ | Response; Max=0.289 for t=21ns
0% / - (0.27 for 20ns without detector)
o0/ L T — .
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: / \ | The overall charge readout by front end for
0L / \ | transimpedance preamplifier is full!

0000 !
\ / ; Crosstalk; Max=0.0139 for t=7.4ns (5%)
~00%6 i
I v ] Design presented in; J. Kaplon and W. Dabrowski, “Fast CMOS binary
—0010 o7 N N ] front end for silicon strip detectors at LHC Experiments,” IEEE Trans.
0 5x1078 1x1077 15 %10~ Nucl. Sci., vol. 52, no. 6, pp. 2713-2720, Dec. 2005
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Example of crosstalk calculation for charge preamp

A

[\

15 x10~7

0

12/10/2012

5 x1078

1 x10~7

15 x 10~/

Kv=83dB, 1,, =200ns, GBP=1GHz %)
Detector; c,.=7pF, c,=4pF (ATLAS SCT)

Response; Max=0.265 for t=22.2ns
(0.27 for 20ns without detector)

j i_(t) ot =0.99
0

Lost of charge related to finite open
loop gain of the preamplifier!

Crosstalk; Max=0.017 for t=9.2ns (~6.5%)

Preamplifier stage the same as in the last slide but working in charge
mode (very high RF, CR-RC2 filter build with shaper only)
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To minimize crosstalk:

1 for SLHC strip detectors (few pF detector capacitances ) the
optimal open loop gain of the preamplifier should be around 70 to
80dB (in order to provide cross talk less than 5%)

[ for pixel detectors ~50 dB open loop gain sufficient

 for peaking time around 20 ns as for SLHC the GBP should be

above 1 GHz
 transimpedance amplifiers better than charge amplifiers (but

the difference is moderate)
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Minimizing noise and power



Noise/power optimisation

Low noise at minimum power:
[ limiting the serial noise contribution to the one, input
transistor:

[ single ended architecture (compatible with the
construction of the sensor)
[ high signal gain of the input stage (to limit contribution
from following stages)
1 careful design of the active load (degeneration of current
sources), proper bias for the regulated cascode

1 optimization of the input transistor (type, dimensions)

1 evaluation of the parallel noise sources (detector leakage,

choice of the preamplifier feedback type)

M noise filtration
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Principle of noise filtration for CSA

~>TN 10° feedback (parallel)
” Cr cl- I det. leak (parallel)
I a 107 === thermal (serial)
2 - === flicker (serial)
= total
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VﬂOp _Vns_Cd +|np . 1 ot b — o d
— 2 2 ~2 10° 10° 10’ 10° 10°
Af Af C F Af w C F PSD at preamplifier output (example of 250nm IBM f[Hz]
- design optimized for short strips);
0 V2 5 O C,=5pF C=80fF
2 _ nop ‘ i ‘ Q  Input transistor NMOS 320/0.5, Id=140uA (gm=4mS)
ano - J- Af H ( J 0)) af O Rfeed=100 kOhm
0 1 Det. Leak=300 nA

To converge the integral, the filter should consist of “whitening” section for low
frequencies (parallel noise contribution) and low pass section (bandwidth limitation for
high frequency) - CR-RC filters
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Noise and signal spectra's for CR-RC filters
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O optimum time constant of CR-RC filter usually
longer than requested by the timing condition of
LHC experiments

U reduction of serial noise contribution (thermal
noise of the MOS channel, shot noise of BJT) by
increase of g, of the input transistor
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Noise optimisation of g, <->C,,. for
input transistor (EKV transistor model)

Transconductance:
~G(I g W k-T 1
On= ( f)'n.U l,=2-n-K, -—-U2 U, =— G(l,) =
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g, in weak inversion

Optimization for IBM 130nm NMOS L=300nm and Cd=5pF
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Usually optimisation leads to operating of the transistors in weak or moderate inversion regions.
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PSRR in single ended stages



PSRR for single ended stage (1)
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PSRR for single ended stage (2)

So =K, S, +Ng
S; =f-S,
S, =S, -5
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L

T Driving K, improves PSRR.
0 All single ended stages should be

= - designed as feedback amplifiers with
high open loop gain.
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PSRR for single ended stage (3)
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Open loop gain and PSRR characteristics of cascode preamplifier
for a fast pixel front end implemented in 130nm CMOS.
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Motivations to increase open loop gain
(input stage)

d Lower input impedance of preamplifier;
[ better charge collection efficiency

J lower cross talk

1 Optimizing feedback impedance (i.e. signal gain of
the preamplifier) versus input impedance = charge
collection efficiency, crosstalk signals and noise
contribution from following stages

1 PSRR (all single ended stages)
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Consequences of technology scaling

IBM CMOS 250nm RF 130nm RF 65 nm LP
(IBM) (IBM) (TSMC)
tox 5nm 2.2nm 2.6nm
Kp@lspec NMOS 330 uA/V? 720 uA/V? 320 uA/V?
vdd 2.5V 1.2V (1.5V) 1.2V
g../84s moderate inv. 70 30 18
(example for input transistor) (|=500nm) (|=3()Onm) (|=140nm)
Peak ft 35 GHz 94 GHz 240 GHz

) Advantages:

U higher f, and transconductance (but not always = see TSMC example)

O Drawbacks:
O Lower intrinsic gain and supply voltage
[ solution: cascode and regulated cascode architecture

O preferable operating point: weak or moderate inversion (minimum Vdd;,;)
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Weak inversion: some
consequences



Inversion order versus the speed of
CMOS circuit

25

¢ O A measured (Ly=0.36 um) ANVp=15V
¢ @ A measured(L;=056um)
— —— —— simulation (EKV v2.6) £

20

lspec=184.36A for Ly=0.36pm
15 I5pec=118.52pA for Lg=0.56pm

For both devices:
10— Ng=10, Wi=12 pm

5

Transit Frequency f; [GHZ]

0.01 0.1 1 10 100 1000
|D/ |spec

Transit frequency ft as a function of inversion order for 250nm CMOS technology °

For devices biased in weak inversion we never obtain highest possible speed of a
given technology

* C.Enz, “MOS transistor modeling for RF IC design”, IEEE J.Solid-State Circ., vol. 35, no. 2, pp.186-201)



Noise of the active load

i for weak inversion gm1=gm2
O_ M2 i nl = i2

I |
AL X
@

If all transistors are in weak inversion then the g
is defined only by current = all g, the same

Increase of input series noise by ~40%!
Resistive degeneration of g, works

But we have to spend another ~100mV taken out
from Vvdd...
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Examples of the front end
amplifiers



Basic architectures for the input stage




Basic configurations of feedback

- i 2i¢ Types of detector coupling: AC and DC

Cr Mla Mib

Sensor ¢,
| I

@ " H;
L . HV
& s e
Zm2 C )
T ) = ) For AC coupled detectors:
= v O Resistive feedback, (a)
MI_[ | wm2 O Active feedback, (b)
T, 2 O Active feedback with non-linearity
e | oW compensation, (d)
»—||—<-—>—m For DC coupled detectors (leakage compensation):
. NxCp O With some limits type (a) and (d)
T @ O Krummenacher feedback (c)
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Front end channel in BICMOS
technology (present ATLAS SCT)

2
£ £ |
GND1 GND2 3

Preamplifier

- Optimized for detector capacitances of about 20pF
- Input stage: 1GHz GBP, 65dB open loop gain
- Peaking time 25ns, power consumption 1.7mW/channel (3.5V supply)

12/10/2012

29



Front end channel in CMOS 250nm technology
(ATLAS, TOTEM experiment, CT head)

IEEREE

- Various versions optimized for detector capacitances from 5 to 30pF
Input stage: 0.6-1GHz GBP, 85dB open loop gain
Peaking time 22ns, power consumption 0.7-1.5mW/channel (2.5V supply)



Front end channel in 130nm CMOS
technology (SCT short strips)
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Preamplifier ?«mplifier and integrator

- Optimized for detector capacitances from 5 to 10pF
- Input stage: 2GHz GBP, 80dB open loop gain

- Peaking time 22ns, power consumption 0.2-0.3mW/channel (1.2V supply)
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Fast (5ns) front end for pixel (130nm CMOS)
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Comparator & TL driver

- Optimized for detector capacitances around 250fF
Input stage: 2GHz GBP, 47dB open loop gain
Peaking time 5.5ns, power consumption 0.12mW/channel (1.2V supply)
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Summary

(d Power consumption is a key issue in HEP applications

[ Front end electronics for semiconductor detectors = results of
trade off between noise, power and speed requirements

1 Parameters of input stage define overall performance of front end
in terms of noise, charge collection efficiency, crosstalk signals,
phase margin and PSRR

[ Technology scaling: new opportunities but there are also some
new problems...
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Crosstalk calculation; currents at
front end inputs

Cr(s) Sig(s) Cr(s)

////*\\Qj ////*\\Qj ////*\\ii)

Zin Zin Zin * ® *

N [N [ I \L l
p

ic(s) is(s) ic(s) ig J\ @ in
C _[_ Uin(s)

Simplified model; assumption that input of the preamplifier is loaded with ¢, and two c,, capacitances
(neglecting input impedances of the neighbors). Using Kirchhoff law one can write:

Iy =u [s(c+2c)+1j (s) =1 ( ) u Zi,
d = Yin " 2\ “Vis) T iy (s) =1 (delta Dirac in —

Zin ‘ " 1+S'(Cb +2'Cis)'zin
Current flowine into Crosstalk signal (we assume i —u. . 1
readout channgel I, =U_-— that current flows into Z;, of ¢ Tin 7 1

Z, neighbor through ¢ ) nt
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Crosstalk calculation; example of
response with CR-RC? filter

For example calculation we will consider CR-RC? type of the shaper. The
transfer function in operator domain is following;

Tz
E A+s-7,)°

The response of Front End to delta Dirac function in time domain will be:
-1 .
L (TFE "s)
The crosstalk of first neighbor in time domain will be:

L_l(TFE ) ic)
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1fC signal [n

Frequency spectrum of the detector
signal (Energy Spectrum Density -ESD)
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Minimization of serial noise — driving of g,
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