Krummenacher loop for large signal; calculation of the discharge current

Fig1. Krummenacher feedback for n+-on-p- detectors. Large signal analysis.

Assuming that M2 and M1 are in weak inversion one can write the expression for its drain currents as:

 $i_{1,2} = A \cdot \exp(\frac{v_{gs1,2}}{n \cdot U_t})$ where A is the technological constant depending also on the transistor dimensions, U_t is thermal voltage and v_{gs} is gate source voltage.

For the fast signal analysis and neglecting the leakage current, the discharge current i_{dis} flowing through feedback capacitor C_F has to be supplied to M1 from the capacitor C_L (differential pair operation). Current flowing through M4 is constant and equal to i_f (C_L is holding the v_{gs} of the M4 for fast changing signals). Sum of the currents at nodes 2 and 3 gives:

 $i_f + i_{dis} = i_1$ and $i_2 = i_f - i_{dis}$ Knowing that $v_{gs1} - v_{gs2} = v_{out}$ (signal minus DC)

and combining all above expression one can derive the expression for i_{dis} as a function of output voltage:

 $i_{dis} = i_f \cdot \operatorname{Tanh}(\frac{v_{out}}{2 \cdot n \cdot U_t})$